
Error (Exception) Handling
(Try / Except)

Chapter 03b



Lesson Objectives

• Examples of Possible Errors

• Types of Errors

• Where to put in (Try / Except) Error Handling in Code

• Many Exception Errors



There are a lot of different situations that can 
raise errors in code.
• Converting between datatypes

• Opening files

• Math calculations

• Trying to access a value in a list that does not exist



Types of Errors – Syntax Errors

• Misspelled words, quotes missing
• TIPS: 

• Sometimes look right before where error occurred.

• Look at the error message.

• Use Internet to explain error message.



Types of Errors – Logic Errors

• Syntax is correct, but program doesn’t do what you want it to do.

• Output is not correct answer.

salary = ‘5000’

bonus = ‘500’

paycheck = salary + bonus

print(paycheck) #OUTPUT 

5000500



Types of Errors – Runtime Errors

• Code basically works but something out of the ordinary ‘crashes’ the 
code

• You write a calculator program and the user tries to divide by zero.

• Your program tries to read a file, and the file is missing.

• Your program is trying to perform a date calculation and the date 
provided is in the wrong format.



EXAMPLE: Let’s create a calculator program that will take two 
numbers inputted by the user and divide them, save as calc.py

firstNumber = float(input(‘Enter first number’))

secondNumber = float(input(‘Enter second number’))

result = firstNumber / secondNumber

print(result)



ADD a try/except around the code that generates the error

firstNumber = float(input(‘Enter first number’))

secondNumber = float(input(‘Enter second number’))

try: #indent try clause

result = firstNumber / secondNumber #if error occurred anywhere

print(result) #in try clause, jumps to except

except:

print(‘I am very sorry something went wrong’)



try / except

try block – lets you test a block of code for 
errors.

except block – lets you handle the error.



To display the error, use function sys.exc_info()

import sys

firstNumber = float(input(‘Enter first number’))

secondNumber = float(input(‘Enter second number’))

try:

result = firstNumber / secondNumber

print(result)

except:

error = sys.exc_info()[0]

print(‘I am very sorry something went wrong’)

print(error)



MANY EXCEPTIONS: Handle one or more specific errors, and 
then have a generic error handler as well

import sys

firstNumber = float(input(‘Enter first number’))

secondNumber = float(input(‘Enter second number’))

try:

result = firstNumber / secondNumber

print(result)

except ZeroDivisionError:

print(‘The answer is infinity’)

except:

error = sys.exc_info()[0]

print(‘I am very sorry something went wrong’)

print(error)



ERROR HANDLING

• Errors can be handled with try and except statements.

• The code that could potentially have an error is put in a try clause.

• The program execution moves to the start of an except clause if an 
error happens.



ERROR HANDLING

def spam(divideBy):
try:

return 42 / divideBy
except ZeroDivisionError:

print(‘Error: Invalid argument’)

#Calls to the spam function, passes number as argument
print(spam(2))
print(spam(12))
print(spam(0))
print(spam(1))



The most important thing to do is to test with 
different values!
1. Execute your code with everything running normally.

2. Execute your code with incorrect user input
• Enter letters instead of numbers

• Enter 0 or spaces

• Enter a value in the wrong format (e.g. dates)

3. Try other error scenario such as missing files

4. Try anything you can think of that might crash your code
• Enter really big numbers

• Enter negative numbers



Do I need to handle EVERY possible error?

• Sometimes writing the code to handle the errors takes more time 
than writing the original program.

• Depends on how the code will be used.
• If you are writing a system for air traffic control, I would want a very thorough 

error handling!

• If you are writing a fun little app to tweet when your plant needs water, I 
wouldn’t worry about it.


